CeX3D Converter 0.4.1 - Commandline Manual

*

Anoq of the Sun, Hardcore Processing

July 17, 2003

1 Introduction
CeX3D Converter can do:

e LightWave 3D to Unreal Editor conversion.

LightWave 3D to RenderMan conversion.

e LightWave 3D to LightWave 3D conversion.
e Unreal Editor to RenderMan conversion.

e Unreal Editor to LightWave 3D conversion.

e Unreal Editor to Unreal Editor conversion.
It is available for:

e Windows (x86/win32)

e Linux (x86/Linux)

It is a standalone command line utility which can be installed so that objects
can be converted with only 2 mouse clicks in Windows Explorer.
See Appendiz A: Features for details about what is supported.

2 This document in other formats

This document is a available in the following different file formats:

e http://www.CeX3D.net/converter/documentation/cmdmanual.html
e http://www.CeX3D.net/converter/documentation/cmdmanual.pdf

e http://www.CeX3D.net/converter/documentation/cmdmanual.ps

*© 2000-2001 Anoq of the Sun (alias Johnny Andersen)

3 Disclaimers and copyrights

CeX3D Converter is copyright (© 2000-2001 by Hardcore Processing.
NO ONE MAY REDISTRIBUTE CeX3D Converter or any parts of it.

The customer of CeX3D Converter will indemnify, hold harmless, and
defend Hardcore Processing against lawsuits, claims, costs associated with
defense or accusations that results from the use of CeX3D Converter.

Hardcore Processing is not responsible for any damages whatsoever, in-
cluding but not limited to loss of data, interruption of business, personal
injury and/or any consequential damage without limitation, incurred be-
fore, during or after the use of CeX3D Converter. Hardcore Processing’s
entire liability, without exception, is limited to the customer’s reimburse-
ment of the purchase price of the software (maximum being the suggested
retail price listed by Hardcore Processing) in exchange for a signed pa-
per contract of assurance that the customer have deleted all versions of
CeX3D Converter that the customer has ever had anything to do with.

4 Installing

To install CeX3D Converter on your computer you should follow the instructions
given in the one of the subsections below which correspond to your system.

4.1 Installing on Windows
1. Unpack the file CeX3DConverterCmd*_x86-win32.zip.

2. Copy the file CeXC.exe somewhere on your computer where you have a
path to. The directory C:\Windows\System32 is usually a good place.

The unpacked directory also contains two example batch files which enables
you to convert files with only 2 mouse clicks in Windows Explorer. These
batchfiles can be installed as follows:

1. Copy the batch files to where you want them to be. This could be
C:\Windows\System32.

2. Now you could edit the batch files in notepad (or whatever) to suit your
needs. But you can also wait until you have read the rest of this manual
:) Remember to edit the files in C:\Windows\System32 or where ever you
copied them to.

Open Windows Explorer.

Choose the View menu and choose Options. ...

Go to the File Types page.

Press New Type....

Type Light Wave Object in the field Description of type.

Type .lwo in the field Associated extension.

© 2 N o otk W

Press New. .. under the Actions field.
10. Type Convert to Unreal in the field Action.

11. If you placed the batch files under C:\Windows\System32, then type
C:\Windows\System32\ExampleToUnreal.bat in the field Application used to perform action.

12. Press Close in this window.
13. Press New. .. under the Actions field again.
14. Type Convert to RenderMan in the field Action.

15. If you placed the batch files under C:\Windows\System32, then type
C:\Windows\System32\ExampleToRenderMan.bat in the field Application used to perform actior

16. Press Close in this window.
17. Press Close again.
18. And once more... and you’re now set.

19. You can now right-click on a .lwo file in Windows Explorer and do either
Convert to Unreal or Convert to RenderMan.

4.2 Installing on Linux

1. Unpack the file CeX3DConverterCmd*_x86-linux.tar.gz. This is can
usually be done with these commands:

gzip -d CeX3DConverterCmd*_x86-linux.tar.gz
tar -xvf CeX3DConverterCmd*_x86-linux.tar

2. Copy the file CeXC somewhere on your computer where you have a path
to. The directory /usr/bin is usually a good place. You can copy it with

this command:

cp CeXC /usr/bin

5 Using CeX3D Converter

CeX3D Converter is a standalone command line utility. This means that under
Windows you use it from DOS and under Linux you use it from a Unix shell.
Under Windows you can also convert files with 2 mouse clicks in Windows
Explorer. However, this probably still requires that you edit a batchfile to do
the conversion the way that you need it.
The following will describe the commandline options for the converter.

5.1 Basic use of CeX3D Converter
CeX3D Converter can be called with the command CeXC like this:

CeXC --to=<output format> MyObject.lwo
Where <output format> is one of:

e RIB : RenderMan RIB format
e Unreal.T3D : Unreal brush files

So for instance you can type:
CeXC --to=Unreal.T3D MyObject.lwo

The default for <output format> is RIB so if you just write
CeXC MyObject.lwo

then CeX3D Converter will convert to RenderMan RIB format. You can
convert several files at once by writing a command like this:

CeXC MyObjectl.lwo MyObject2.Lwo MyObject3.Lwo

CeX3D Converter has many options for controlling the conversion process.
The options available can be shown if you run the converter without any argu-
ments:

CeXC

The other options will also be documented in the following sections.

5.2 Tutorial for convertering from Light Wave on Windows
to RenderMan on Windows

If you are converting LightWave 3D objects made on Windows into RenderMan

RIB files and RenderMan shaders to be rendered with Larry Gritz’s Blue Moon Rendering Tools
(BMRT) on Windows, you would problably want to use a command similar to

this:

CeXC --fromTextureRoot=C:\MyLWTextures\
-—toTextureRoot=C:\MyBMRTTextures\
--textureExtension=TIFF
MyObject.Lwo

If you are using BMRT then you would probably want to know that BMRT
only supports 24bit TIFF images. So you will have to convert and rename your
texture files to the appropriate 24bit TIFF files.

To render the exported files with BMRT you need to set up your BMRT
paths correctly for shaders and all. You also need to compile the generated
shaders with the BMRT command slc. Then you can render with the BMRT
command rendrib - but see the BMRT documentation about these things.

Unfortunately I do not have any experience with Pixar’s Photorealistic Ren-
derMan (PRMan) on these matters.

If you need the details of why the CeXC commands looks as described above
- then they are documented after these tutorials.

5.3 Tutorial for convertering from Light Wave on Windows
to RenderMan on Unix

If you are converting LightWave 3D objects made on Windows where your tex-

tures are stored in C:\MyLWTextures\ and you want to convert into RenderMan

RIB files and RenderMan shaders to be rendered with Larry Gritz’s Blue Moon Rendering Tools
(BMRT) on Unix where your textures are stored in /usr/local/myBMRTTextures/,

you would problably want to use a command similar to this:

CeXC --fromTextureRoot=/C/MyLWTextures/
--toTextureRoot=/usr/local/myBMRTTextures/
--to0SType=Unix --textureExtension=TIFF
MyObject.Lwo

If you are converting LightWave 3D objects made on Unix where your tex-
tures are stored in /usr/local/myLWTextures/ and you want to convert into
RenderMan RIB files and RenderMan shaders to be rendered with Larry Gritz’s
Blue Moon Rendering Tools (BMRT) on Windows where your textures are
stored in C:\MyLWTextures\, you would problably want to use a command
similar to this if you’re using CeX3D Converter for Unix:

CeXC --fromTextureRoot=\\usr\\local\\myLWTextures\\
--toTextureRoot=C:\\MyLWTextures\\
--to0SType=Windows --textureExtension=TIFF
MyObject.Lwo

If you’re running CeX3D Converter on Windows, you should remove the dou-

ble backslashes in the Windows filepaths C: \\MyLWTextures\\ and \\usr\\local\\myLWTextures\\.
You will still need to convert textures and compile RenderMan shaders as

described in the previous tutorial.

5.4 Tutorial for converting from LightWave to UnrealEd

If you are converting LightWave 3D objects into Unreal. T3D files then you
would problably do something like this:

CeXC --to=Unreal.T3D --textureWidth=256 --textureHeight=256
--coordTransformsLH=rz90,ry90 MyObject.Lwo

After this is done you will want to import this correctly into the Unreal Editor.
This is done with the following steps:

1. Convert all textures used in the LightWave object into 24bit BMP files
(24bit PCX files did not seem to work). The textures must have the same
resolution as you specified during conversion - which is 256x256 pixels in
this example.

2. Copy the resulting texture files into the texture directory in the Unreal
Editor. This directory is usually UnrealTournament\Textures\.

3. Start the Unreal Editor.

4. In the lower right corner of the screen, press import for importing a texture
file.

5. In the dialogbox which appears, things should work if you type the name
of the texture (without filepath or .BMP or .PCX) in the field Name, type
None in the Group field and MyTeztures in the field Package.

6. Then confirm this dialogbox.
7. Repeat steps 4 to 6 for all textures used in the LightWave object.

8. In the menu at the top of the screen go to the brushes menu and choose
import brush (not load brush).

9. Find the .t3d file you exported with the CeXC command just before (but
be sure that you’re not loading it over a network, since UnrealEd cannot
load files over a network).

10. In the dialogbox which appears after this, you can choose how the Unreal
Editor should handle the object.

11. Confirm this dialogbox.

12. Now you have to click on one of the 3D views before you will see the
imported brush.

13. Place the brush where you want it in the Unreal world.

14. Finally you can go to the brush menu at the top of the screen and choose
Subtract to subtract the brush from the Unreal world - in case you want
to carve the Light Wave object out of the Unreal world and see the inside
of the object.

15. Or - if you have already carved an environment into the Unreal world
which is big enough to contain your LightWave object, then you can go
to the brush menu at the top of the screen and choose Add to add the
brush to the Unreal world. This means that you can see the outside of
the object in the Unreal editor.

For more details about the Unreal Editor you should look for the Unreal
Editor documentation.

6 CeX3D Converter options reference

The following is a complete reference to all of CeX3D Converter’s options.

6.1 Overview
6.1.1 Options for renaming texture filenames

e ——fromTextureRoot
o ——-toTextureRoot
e ——-textureExtension

e ——-to0SType

6.1.2 Unreal.T3D specific options

e ——textureWidth

e ——-textureHeight

6.1.3 Coordinate transformation options

e —-scale

e —--coordTransformsLH

6.1.4 Other options

e ——destFileName

6.2 Option reference
6.2.1 —fromTextureRoot

To change the root directory where your texture files are placed during the
conversion you can use the options ——-fromTextureRoot and ——toTextureRoot.

The option --fromTextureRoot specifies the prefix of the path to be re-
moved from the texture filenames:

--fromTextureRoot=<old texture root>

Notice that if you need to use backslashes in the texture root you must
type 2 backslashes for each backslash in the filename if you’re running CeX3D
Converter for Unix. You should not do this if you’re using CeX3D Converter
for Windows.

As an example of this you could change the texture directory from C: \Textures\
to T:\ with the following:

CeXC --fromTextureRoot=C:\Textures\ --toTextureRoot=T:\ MyObject.Lwo

Again, remember to use double backslashes if you’re using CeX3D Converter
for Linux.

10

6.2.2 —toTextureRoot

To change the root directory where your texture files are placed during the
conversion you can use the options ——fromTextureRoot and ——toTextureRoot.
The option -—toTextureRoot specifies the new texture root directory:

--toTextureRoot=<new texture root>

If you need to use backslashes in the texture root you must type 2 backslashes
for each backslash in the filename when using CeX3D Converter for Unix.

As an example of this you could change the texture directory from C: \Textures\
to T:\ with the following:

CeXC --fromTextureRoot=C:\Textures\ --toTextureRoot=T:\ MyObject.Lwo

Again, remember to use double backslashes if you’re using CeX3D Converter
for Linux.
6.2.3 —textureExtension

If you set the following option:
—--textureExtension=<extension>

then all texture filenames will have their old file extension removed and the
specified <extension> will be used instead. For example if you specify

--textureExtension=TIFF

and a texture is called Texture.JPEG then it will be renamed to Tex-
ture. TIFF.

6.2.4 —toOSType

Setting the option:
--to0SType=Unix

will convert all texture filenames to Unix filenames. For instance backslashes
in Windows filenames will become slashes and volume names in windows like
C:\ will become directories - in this example /C/. This is handy when converting
objects from Windows to Unix.

Setting the option:

--to0SType=Windows

will convert all texture filenames to Windows filenames. For instance slashes
in Unix filenames will become backslashes. This is handy when converting
objects from Unix to Windows.

The default value for —-to0SType is Windows if you are using CeX3D Con-
verter for Windows. The default is Unix if you are using CeX3D Converter for
Linux.

11

6.2.5 -—textureWidth and —textureHeight

If you are converting to Unreal. T3D format then you will most likely want to
specify the resolution of the textures you are using. This can be done with the
following options:

--textureWidth=256 --textureHeight=256

In this case the textures used in the object must have the resolution 256x256
pixels in the Unreal Editor. The default value for -—textureWidth and --textureHeight
is 512, so if you don’t set the ——textureWidth and --textureHeight option,
your textures must be 512x512 pixels.

6.2.6 -—scale

If you wish to scale objects during conversion it can be done by setting the
option:

--scale=<factor>

For instance if you wish to scale an object by a factor of 2.5 it is done like
this:

--scale=2.5

The default scaling factor when converting to RenderMan is 1. When con-
verting to Unreal the default scaling factor is 40.

The reason for setting the Unreal scale factor to 40 as default is that one
unit in LightWave is 1 meter. One unit in Unreal on the other hand, is about
one inch.

6.2.7 —coordTransformsLH

When converting objects it is possible to rotate them. This can be done with
the option:

—-coordTransformsLH=<transforms>

Here <transforms> is a comma separated list of transformation operations.
Each transformation operation can be one of:

e rx<angle> - for rotating <angle> degrees around the X axis.
e ry<angle> - for rotating <angle> degrees around the Y axis.

e rz<angle> - for rotating <angle> degrees around the Z axis.

For example if you want first to rotate 12.5 degrees around the X axis and
then 45 degrees around the Y axis you can write:

--coordTransformsLH=rx12.5,ry45

When converting from LightWave to the Unreal Editor you will probably
want to use:

12

--coordTransformsLH=rz90,ry90

This is because in LightWave (and in RenderMan) the coordinate system
looks like this:

e Positive direction of X axis points to the right.
e Positive direction of Y axis points up.

e Positive direction of Z axis points away from the camera.
In the Unreal Editor however, it looks like this:

e Positive direction of Y axis points to the right.
e Positive direction of Z axis points up.

e Positive direction of X axis points away from the camera.

So rotating first 90 degrees around the Z axis and then 90 degrees around the
Y axis will transform objects so that up in Light Wave becomes up in the Unreal
Editor, away from the camera in LightWave becomes away from the camera in
the Unreal Editor and so forth. It should also be noted that when rotating
some multiple of 90 degrees the rotations will be completely accurate - this is
not always the case when working in LightWave, so you are encouraged to use
CeX3D Converter to handle this :)

You can also consider using the option:

--coordTransformsLH=rx90

This will at least convert up in Light Wave to up in the Unreal Editor.

The attentive reader will already have noticed that both of the above co-
ordinate systems are lefthanded coordinate systems. This is the reason why
the option is called --coordTransformsLH and not just --coordTransforms.
When --coordTransformsLH is used, the objects are simply kept in the left-
handed coordinate systems - and this is also what makes most sense, since
all supported formats use lefthanded coordinatesystems. However it should be
noted that mathematical standard coordinate systems are right handed coordi-
nate systems, so this is what CeX3D Converter uses internally - but the option
coordTransformsLH will not disappear in the future.

6.2.8 —destFileName

When converting files, the filename of each converted file is automatically gen-
erated from the input filename. For instance if you convert an object called
MyObject.Lwo into Unreal. T3D format, then the destination file will be called
MyObject.t3d. If you don’t want your file to have these default names you can
specify your own destination filename with this option:

--destFileName=<filename>

13

7 Appendix A: Features

7.1 Supported input formats
e LightWave 3D Object files from version 6 and above (LWO2).

e LightWave 3D Object files before version 6 (LWOB).
e Unreal brush (Unreal. T3D) files for the Unreal Editor.

7.2 Supported output formats
e RenderMan RIB files with RenderMan shaders.

e Unreal brush (Unreal. T3D) files for the Unreal Editor.

e LightWave 3D Object files from version 6 and above (LWO2).

7.3 General features

e CeX3D Converter for Windows comes with example batch files for con-
verting objects with only 2 mouse clicks in Windows Explorer.

e Input fileformats are automatically detected.
e Objects can be scaled during conversion.

e Objects can be rotated during conversion - with all multiples of 90 degrees
being completely accurate.

e Texture paths can be changed during conversion.
e Support for arbitrary polygons.
e Support for planar mapped textures.

e Support for UV textures.

7.4 Features for each format

read read read write write

IWOB LWO2 Unreal.T3D RIB Unreal. T3D
Triangles Yes Yes Yes Yes Yes
Arbitrary polygons Yes Yes Yes Yes Yes
Planar mapped textures Yes Yes No Yes One per polygon
UV textures No Yes No Yes One per polygon
Other surface data Yes Yes No Yes No
Additive surfaces No No No No No
Reflections Yes Yes No No No
Refractions No No No No No
Caustics No No No No No

Notice that a feature has to be supported for both the file format you are
reading and the file format you are writing before it will actually work.

14

7.4.1 Limitations in the formats

The Unreal. T3D file format has limited capabilities for texture support. It only
supports one color texture per polygon. So if there are multiple textures on a
polygon, only the first color texture will be exported in the Unreal. T3D file.
However, you can create several Light Wave surfaces for different polygons, each
with different texture. The Unreal Editor only supports texturing of up to
3 accurate UV texture coordinates - so when working with UV textures you
should probably triangulate your objects. The Unreal. T3D file format also only
seems to be capable of handling polygons with up to 16 vertices each and only
polygon meshes containing up to 500 polygons in total. CeX3D Converter will
try to split polygons with more than 16 vertices - but this will of course generate
additional polygons, so you may want to split these polygons manually.

15

8 Appendix B: Planned features

The following features are currently planned to be implemented in a near future:

1.
2.

Split Light Wave objects based on layers or surfaces.
Support for importing LightWave 3D Scene files.

Support for exporting Unreal levels.

. Support for the rest of the surface attributes when converting to Render-

Man RIB and Shading Language files.

. Support for Light Wave’s fractal noise textures when exporting to Render-

Man.

16

9

Credits

Credits in no particular order goes to:

The people at ION Storm, in particular Clay Hoffman, Robert Kovach
and Peter Marquardt - for using CeX3D Converter on a real production,
doing lots of testing, giving lots of ideas and feedback and for being very
enthusiastic.

Erik De Neve from Epic Games - for helping with all my questions.

Larry Gritz from Pixar - for help and for tolerating my unjustified claims
of bugs in BMRT ;)

Brad Peebler from NewTek - for his help, enthusiasm and interest in
CeX3D Converter.

Virtual Effects and Fantasies - for betatesting CeX3D Converter on a real
production.

Josh Tsui - for feedback and for supplying test material.

17

